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1. Introduction

The fermionic quantum numbers of the Standard Model (SM) clearly hint towards an em-

bedding of the latter into a gauge theory of a simple group such as SU(5) or SO(10), dubbed

Grand Unified Theory (GUT). Moreover supersymmetry can both control the smallness of

the electroweak scale as well as unify the three gauge couplings of the SM with astonishing

accuracy at a scale not far below the Planck scale. String and M -theory typically predict

gauge groups that contain these groups as subgroups and also possess a large number of su-

persymmetric vacua, some of which might yield the minimal supersymmetric SM (MSSM)

at low energies. However, they require the presence of extra dimensions which have to be

compactified in order to make them invisible in our low energy world. A popular choice of

geometry is an orbifold [1] as it also provides a mechanism to break the extended supersym-

metry, produce chirality and reduce the larger gauge symmetry to the SM or its simplest

GUT extensions. From a field theoretic point of view, these are effective supergravity

theories with all but four of its 10 or 11 dimensions compactified on flat manifolds with
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isolated singularities. Although there are only few supergravity limits of string theory, the

number of possible orbifolds is huge, and looking for the MSSM in this vast “landscapes”

of vacua might be a hard task.1 It is however quite conceivable that some of the extra

dimensions are larger than others and intermediate models with effectively fewer extra

dimensions could be realized in nature. In view of this, a lot of effort has been made to

construct five and six dimensional models and break the GUT group by orbifolding down

to the SM [4–12].

An important consistency requirement of any gauge theory is that the underlying

local symmetries are free of anomalies, i.e. they should not be spoiled by quantum effects.

In this paper, we will only be concerned with perturbative anomalies, related to gauge

transformations that can be continuously connected to the identity. Anomalies generally

signal that the fermionic measure of the path integral is non invariant (although the action

is) and are a one loop effect. While string theory has no anomalies by construction, in

field theory this is an additional independent restriction for model building. In smooth

compactifications, the anomaly freedom of the higher dimensional bulk theory guarantees

that the low energy theory is anomaly free as well. Orbifolds, on the other hand, involve

singularities such as boundaries and conical defects, and even though the bulk theory is

anomaly free, anomalies localized on these lower dimensional “branes”2 can occur [13–19].

In the limit where the volume of the orbifold is taken to zero, the sum of the localized

anomalies should match the anomaly as calculated from the zero modes of the theory.

Although the absence of any localized anomaly in particular implies a consistent zero mode

spectrum, the reverse statement is generally not true. It is important to notice that the

occurrence of the localized anomaly is an entirely local phenomenon, i.e. it only depends

on the physics in the immediate neighborhood of the brane. Consequently it should be

canceled locally, i.e. by the introduction of matter localized at the fixed point. There

is however one important exception to this rule. As it is well known from nonsingular

spaces, one can sometimes cancel the fermion anomaly by so-called Green-Schwarz p-form

fields that have anomalous couplings to the gauge fields at tree level. An extension of this

mechanism to orbifolds has been proposed in refs. [14, 16, 18–20] which due to its close

relation with [21] is sometimes referred to as the inflow mechanism. This name stems from

the fact that the Green-Schwarz fields are bulk objects, whose anomaly can produce inflow

from the bulk to the brane that can cancel the localized anomaly. However, this inflow

takes on a particular form that in general does not match the localized anomaly from the

fermions. Moreover, even if cancellation is achieved at one fixed point, generically other

inflow at different fixed points is created. A necessary though not sufficient condition for

this mechanism to cancel all localized anomalies is that the sum of all fixed point anomalies

(or equivalently the anomaly of fermion zero modes) vanishes.

Localized anomalies on orbifolds have been examined in refs. [13–19]. The purpose of

this paper is to gain more insight in the structure of these anomalies in the six-dimensional

case. In six dimensions (or generically in two extra dimensions) the local geometry is

1See refs. [2] for reviews and refs. [3] for recent efforts in this direction.
2Throughout this paper we will use the terms brane, (orbifold) singularity and fixed point interchange-

ably.
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that of a conical singularity, and the gauge breaking at a particular fixed point is entirely

encoded in a gauge Wilson line PG around the apex of the cone. The background gauge

potential generating this Wilson line is expected to be pure gauge in the bulk, and hence

its fields strength should be a distribution supported at the fixed point:

〈F 〉 = −F0 δ(y) PG = exp(iF0) . (1.1)

As such, one would naively expect that if one plugs the nontrivial background gauge po-

tential generating this Wilson line into the formula for the 6d bulk anomaly of a 6d chiral

fermion, one should be able to extract the anomaly at this conical singularity. For instance,

the (irreducible) 6d gauge anomaly becomes a 4d brane anomaly3

Tr F 4 → −TrF0F
3δ(y) . (1.2)

If this naive expectation were true, the cancellation of the bulk anomaly would immediately

lead to the cancellation of the localized anomaly. We will show that this simple assumption

has to be modified in two important ways. Firstly, rather than F0 it is (log PG)/i that has

to be inserted in the six dimensional anomaly. While this seems to be equivalent by means

of eq. (1.1) it is so only modulo integers due to the multivaluedness of the logarithm. As

a consequence, 6d bulk anomaly cancellation no longer implies 4d brane anomaly cancel-

lation, but merely states that the localized anomaly carries an integer coefficient.4 This is

very satisfactory, as it allows one to cancel the localized anomaly with localized fermions.

The contribution of single bulk fermions to the localized anomaly usually has a fractional

coefficient which only converts into an integer once all the anomaly free bulk fermion spec-

trum is summed over. The other modification we will find is that in general further terms,

independent of the Wilson line, may appear. We will show that these always take the

form that can be canceled by the orbifold version of the Green-Schwarz mechanism. In

summary, the brane anomaly can be split into three parts, which are canceled by bulk

fermions, brane fermions and Green-Schwarz forms respectively.

Another type of anomaly we will be concerned with involves the higher dimensional

gravitational symmetries. Anomalies of general coordinate invariance and local Lorentz

symmetry are intimately related and can lead to non-conservation of energy-momentum

and/or to non-symmetric energy momentum tensors [23–25]. At orbifold fixed points, some

of the 6d gravitational symmetries are projected out and others survive. The latter fall

into two classes from a 4d point of view: They are either 4d gravitational symmetries or

simple gauge symmetries, albeit with a gauge boson that is a composite of scalars (i.e. the

vielbein). For instance, the local Lorentz transformations generated by ΛAB(x, y) become

4d local Lorentz transformations Λαβ(x, 0) or local SO(2) transformations Λab(x, 0) at the

fixed point, while the mixed quantities Λαa(x, 0) etc. are forced to vanish due to the orbifold

boundary conditions. Although these gauge symmetries are clearly not dynamical, they

3See section 3 for a short introduction to the concept of anomaly polynomials.
4In constructions with a resolved orbifold singularity [22], eq. (1.2) is correct as it stands. The singularity

is obtained as a limit of a smooth background field configuration, which also creates the brane localized

zero modes. The difference of F0 and (log PG)/i takes care of the anomaly of the latter.
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can develop anomalies at the fixed point even if their corresponding bulk anomalies are

canceled. From a 6d point of view, the quantum effective action is not invariant under

local Lorentz symmetry but picks up source terms supported at the singularities. We will

compute these violations of 6d local Lorentz symmetry and general coordinate invariance

from fermions propagating in the bulk. Quite interestingly, it turns out that in general

localized states transforming under this SO(2) are needed to render the theory consistent.

We point out that from a string theory point of view localized states are indeed expected

to transform under these symmetries and hence contribute to (and possibly cancel) these

anomalies.

The paper is organized as follows: In section 2 we review basic facts about the theory

of Lie algebras and their breaking by inner automorphisms. Section 3 contains the principal

part of this paper. We start by reviewing how localized anomalies arise in orbifolds and then

move on to analyze in depth the 6d geometry R
4×R

2/Zn for both gauge and gravitational

anomalies. Some of the technicalities are deferred to appendices B and C. In section 4 we

rewiew the construction of compact torus orbifolds. Emphasis is placed on a description in

terms of Wilson lines around the singularities (downstairs approach) which allows direct

application of the results of the previous section to the compact case. We also point out

some peculiarities of compactifications related to the gravitational anomalies. In section 5

we calculate gauge anomalies in supersymmetric models and illustrate the formalism and

the results of section 3 with various examples.

2. Symmetry breaking

In this section we would like to gather some known facts about Lie algebras and symmetry

breaking on orbifold fixed points. For an introduction to Lie algebras see e.g. [26] or the

textbooks in ref. [27].

The breaking of the gauge symmetry is best discussed in the Cartan-Weyl basis of

the corresponding Lie algebra g. For any g, one chooses a maximal subset of mutually

commuting elements, the Cartan subalgebra g0. The dimension of g0 is called the rank r of

g and it is independent of the choice of g0. Each H ∈ g can be simultaneously diagonalized

in the adjoint representation,

HadjEα ≡ [H,Eα] = α(H)Eα . (2.1)

The quantities α are called roots. As is obvious from eq. (2.1), they are elements of the dual

space g∗0 of g0. The set of all roots is called the root system; it contains dim(g)−r elements.

As the nonzero eigenvalues are non degenerate, they are in one-to-one correspondence with

the generators Eα. The elements of g0 together with the Eα span the whole algebra g. We

also define an inner product

(H,H ′) = c Tradj HH ′ , (2.2)

where c is fixed in a moment. As eq. (2.2) is non degenerate (in fact positive definite) it

provides an isomorphism between g0 and g∗0, and its inverse is a metric on root space. The

root system of a general Lie algebra turns out to be highly constrained and has lead to the
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Figure 1: Extended Dynkin diagrams of the simply laced Lie algebras. Left panel: An = SU(n+1)

(top) and Dn = SO(2n) (bottom). Right panel (from top to bottom) E6, E7, E8. The most negative

roots −θ are displayed with dashed lines.

famous complete classification of all simple Lie algebras. Besides the four infinite series Ar,

Br, Cr and Dr — corresponding to SU(r + 1),SO(2r + 1), SP (2r) and SO(2r) respectively

— there are five exceptional algebras G2, F4, E6, E7 and E8. One can choose a set of r

roots, {α(i)}, called the simple roots, with the remaining roots being linear combinations

of the simple roots

α = ±
∑

i

aiα(i) , (2.3)

with the ai positive integers. Depending on the sign in eq. (2.3) the roots are called positive

or negative respectively. There is a unique positive root, the highest root θ = ciα(i) such

that ci is greater than or equal to the ai of all other positive roots. The ci are called

Coxeter labels. The normalization of the Killing metric, i.e. the constant c in eq. (2.2), is

now fixed by demanding that

(θ, θ) = 2 . (2.4)

We will from now on restrict ourselves to the ADE algebras Ar, Dr and Er, which have

the property that all roots have length squared two and the inner product of any two roots

is either 0 or ±1 (for two simple roots only 0 and −1 occur). All information of a Lie

algebra is completely encoded in the simple roots and can be neatly summarized in terms

of Dynkin diagrams. Each node stands for a simple root, and two nodes are joint by a

single link if their inner product equals −1. By adding to these diagrams the most negative

root −θ one obtains the so-called extended Dynkin diagram which turns out to be rather

useful in symmetry breaking. The extended Dynkin diagrams for the ADE algebras are

depicted in figure 1.

The basis of simple roots viewed as a basis on g∗0 induces a basis µ(j) on g0 defined by

α(i)µ
(j) = δi

j . (2.5)
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The µ(j) are called fundamental weights. Owing to the isomorphism induced by the metric,

we will stop distinguishing between g0 and its dual, writing any element in either basis

λ = λiα(i) = λiµ
(i) . (2.6)

The coefficients λi are called Dynkin labels. The Dynkin labels of any root are also integers.

Generalizing eq. (2.1) we can define the roots for arbitrary representations, they are called

weights. The importance of the basis eq. (2.5) stems from the fact that the Dynkin labels

of all weights are integers (unlike the roots, the weights expressed in the basis of simple

roots are in general not integers).

We would like to break the gauge symmetry by a Zn inner automorphism of g, that is

we would like to consider the map PG of the algebra onto itself:

PG : T → exp (2πi Vadj) T , (PG)n = 1 , (2.7)

where V is some element of g0 known as the shift vector. It is common to give V in the

basis eq. (2.5), V = Viµ
(i). The generators which are left invariant by P will form the

algebra h generating the unbroken gauge group H. Clearly, each element of g0 is of that

type, so inner automorphisms do not break the rank of the group. The generators Eα

transform non-trivially

Eα → exp(2πi Via
i)Eα . (2.8)

They will be projected out unless Via
i is an integer. In order to get (PG)n = 1 one demands

n V iai ∈ Z , (2.9)

which immediately leads one to

Vi =
νi

n
, νi ∈ Z . (2.10)

Note that the V i are only defined modulo integers, so equivalent shift vectors form a lattice.

We now would like to answer the two (complementary) questions: Which subalgebras

h ⊂ g can be obtained in this way (and what is the corresponding shift vector)? Given an

arbitrary shift vector satisfying eq. (2.10), what is the resulting subalgebra h? To answer

the first question, it has been proposed [28] to transform V to a canonical form, by means

of lattice transformations and so-called Weyl reflections (the reflections of the root system

on hyperplanes perpendicular to a given root). Using these symmetries one casts V into

the form

νic
i ≤ n , (νi ≥ 0) . (2.11)

It is a simple exercise to specify all shift vectors satisfying eq. (2.11) once g and n are

specified. Finding the surviving subgroup defined by this canonical shift vector is now very

simple, first treat the case νic
i < n. All simple roots α(i) with νi 6= 0 are projected out and

the same is true for any non-simple roots that contain one or more such simple roots in

its decomposition eq. (2.3). The unbroken subgroup is thus found by deleting the nodes of
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the Dynkin diagram with νi 6= 0 and reading off the semisimple part. The remaining U(1)

generators are given by

T (i) = µ(i) . (2.12)

This choice gives integer charges to the H-representations occurring in the branching rule

of the adjoint of G. Notice that these U(1) generators are only orthogonal w.r.t. the Killing

metric eq. (2.2) if they correspond to non-adjacent nodes in the Dynkin diagram. We will

need the values for these U(1) charges. They can in principle can be taken over from

the literature (see for instance [26]) and renormalizing them such that the smallest charge

occurring in the branching rule of the adjoint is ±1, which fixes the charge up to a sign.5

The surviving subgroup in the case νic
i = n is found by deleting the corresponding nodes

of the extended Dynkin diagram. In particular, by deleting a single node, all maximal

(regular) subalgebras can be obtained [11].

Let us turn to the other question raised above, which subgroup is obtained for an

arbitrary V . One could find the corresponding Weyl reflections and lattice shifts that

transform V into the canonical form eq. (2.11). However, this might be a very complicated

task. On the other hand, with the knowledge of the root system it is quite easy to give a

diagrammatic recipe that can be used. The complication for arbitrary shift vectors stems

from the fact that although it is obvious which simple roots are projected out, some non-

simple roots which are not just the linear combinations of the surviving simple roots can

be projected in. One thus has to scan the entire root system, find the surviving roots

and reconstruct the unbroken algebra. We would like to describe a simpe method that

simplifies this procedure. Without loss of generality we assume the shift vector to take the

form 0 ≤ Vi < 1. The set of simple roots decomposes into

Σg = Σh0 ∪ Σ (2.13)

where Σh0 contains the simple roots satisfying V ·α(i) = 0 and Σ the simple roots that are

projected out. We would like to complete the set Σh0 to the set Σh, i.e. we would like to

find further surviving roots that can serve as simple roots. To this end one has to write

down the root system Γg in terms of the simple roots (the root systems are well known and

can be taken from the literature [26, 27] or can be computed with the help of a computer

algebra system such as LiE [29]). Identify the set of roots Γh that survive the projection

and write any surviving positive root β ∈ Γh as

β = γ + α , α ∈ span(Σh0) , γ ∈ span(Σ) (2.14)

the set of surviving roots splits into equivalence classes labeled by γ. In fact the roots in

these equivalence classes are nothing but the weights of the representations in the branching

5An explicit way to obtain the charge is as follows: the branching rules for the irrep with highest weight

w contains the representation with highest weight w′ which is simply w with the ith Dynkin index removed.

In our normalization eq. (2.12) its charge is Gijw
j (G being the metric). As an example, consider the

breaking of SO(10) → SU(5)×U(1). This can be achieved by the Zn shift vector V = µ(4)/n = (00010)/n.

The representation with highest weight w = (00001) is the 16 which contains a SU(5) representation with

highest weight w′ = (0001) that is identified as the 5 of charge G45 = 3/4. The charges of the remaining

representations in the branching differ from this by integer multiples of n.
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Figure 2: Left: Dynkin diagram of SU(6). Right: breaking pattern of the shift vector V =

(0, 1/4, 0, 1/2, 1/2) (see text).

of the adjoint in the breaking h → h0 There are thus unique heighest roots

βγ = γ + αγ (2.15)

in each class. The new simple roots will be chosen from the set {−βγ}. In fact all one has

to do is to consider the set Γ = {γ} and find a linear independent subset Γ′ such that an

arbitrary γ is a linear combinations of the γ′ ∈ Γ′ with positive integer coefficient.6 In the

last step, draw the Dynkin diagram of the set Σh = Σh0 ∪{−βγ′} and read off the surviving

algebra h.

Although this approach seems rather pedestrian, it turns out to be quite efficient and

is certainly simpler than identifying the Weyl reflection that leads to the canonical form.

An example is in order. Consider A5 = SU(6) and the shift vector V = (0, 1/4, 0, 1/2, 1/2).

We thus have

Σh0 = {α(1) , α(3)} , Σ = {α(2) , α(4) , α(5)} . (2.16)

The complete root system of Ar is given by

ΓAr = {±(α(`) + α(`+1) + · · · + α(k)) , 0 ≤ ` ≤ k ≤ r} . (2.17)

Besides the simple roots in Σh0, the only surviving positive roots are β1 = α(4) + α(5) and

β2 = α(3) + α(4) + α(5). There is only one equivalence class labeled by γ = α(4) + α(5) and

the highest root in this class is β2. One thus finds the new set of simple roots

Σh = Σh0 ∪ {−β2} = {α(1) , α(3) , −α(3) − α(4) − α(5)} . (2.18)

From the original Dynkin diagram one reads off

−β2 · α(1) = 0 , −β2 · α(3) = −1 , (2.19)

hence the new simple root is connected with a single line to α(3). The final Dynkin diagram

is that of SU(3)⊗SU(2). Since this has rank three, there are two U(1) factors. The example

is displayed in figure 2.

3. Fixed point anomalies

Orbifolds are obtained from smooth manifolds by modding out a discrete (in general finite)

symmetry group G. The points that are left invariant by some P ∈ G are called the

6The set Γ′ usually consists of those γ′ with small V · γ′.
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fixed points of P , they form singular subspaces of lower dimension such as boundaries

and conical defects. An anomaly-free theory in d dimensions does not guarantee that

an orbifolded version of that theory is non-anomalous. In particular, higher dimensional

fermions generically contribute an anomaly supported at the fixed points7

ΛADM jM
A = −iA(Λ)δ(y, yf ) , (3.1)

where the form of the localized anomaly A(Λ) corresponds to the dimension of the fixed

point. To cancel the anomaly, localized fermions have to be introduced. Then contribution

to the anomaly from bulk fermions has been studied by many authors in a variety of

different models [13–15,17–19]. Using Fujikawas path integral method [30], in ref. [18] the

following compact expression for the anomaly was derived:8

A = − lim
s→0

Tr ΛΓQψ exp(sD2/ ) . (3.2)

eq. (3.2) is nothing but the Jacobian of the gauge transformation in the (Euclidean) path

integral. Here Λ is the generator of some (in general nonabelian) symmetry, Γ is the d

dimensional chirality matrix (the analogue of γ5 in four dimensions) and Qψ is the orbifold

projector defined as follows. Consider a chiral fermion in the d dimensional theory that

satisfies the orbifold boundary condition

ψ(x) = PG ⊗ PL ψ(P−1x) , (3.3)

under the orbifold group element P . Here PG and PL define the action of the orbifold twist

on the internal and Lorentz indices respectively. PG is the Wilson line that — if nontrivial

— will give rise to the orbifold breaking of the gauge group. By defining an analogous

action P̂ of the orbifold group on function space via

〈x|P̂ |x′〉 = δ(x, Px′) , (3.4)

we can define the action of P on the field ψ as Pψ = P̂ ⊗PG ⊗PL. The orbifold conditions

Pψψ = ψ can now be solved explicitly in terms of the orbifold projector Qψ

ψ = Qψψ̃, Qψ ≡
1

n

∑

P

Pψ , (3.5)

where the sum goes over all n orbifold group elements and ψ̃ denotes an arbitrary un-

constrained field. The orbifold projector acting on an ψ̃ yields a field ψ satisfying the

constrained eq. (3.3). The expression eq. (3.2) is now a rather intuitive generalization of

Fujikawas result [30]: Just insert the orbifold projector in the trace to restrict it over fields

that satisfy the orbifold boundary condition. One can show that Qψ satisfies the following

properties:

Q†
ψ = Qψ, Q2

ψ = 1, [Qψ,Γ] = 0 , (3.6)

7The factor of i arises because we work in Euclidean space. eq. (3.1) is normalized such that A is real

and the Jacobian of the path integral equals exp[i
R

A(Λ)].
8To fully connect with ref. [18] we note that we will focus on even d (in particular d=6) in this paper.

Furthermore we will choose our orbifold twists to satisfy Qψ = Qψ̄ in the language of ref. [18].
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as well as

[D/ ,Qψ ] = 0, [Λ, Qψ] = 0 . (3.7)

Notice that the expression eq. (3.2) reproduces the bulk anomaly from the term in the

sum in eq. (3.5) that corresponds to P = id. Whenever one of the P ′s possesses a fixed

point the corresponding term in Qψ produces a fixed point anomaly. eq. (3.2) has been

evaluated in the flat background in [18]. Details on the evaluation for the case of curved

backgrounds are provided in appendix B (see also ref. [19] for an alternative calculation

using the formalism of ref. [23]).

Before we go on and evaluate the anomalies for the case of six dimensions, we would

like to comment on the form of the anomaly as obtained from eq. (3.2). The anomaly

calculated in this way gives the so-called covariant anomaly. It transforms covariantly

under gauge transformations but does not satisfy the Wess-Zumino consistency condition

δΛ1A(Λ2) − δΛ2A(Λ1) = A([Λ1,Λ2]) , (3.8)

that follows by identifying the gauge variation of the effective action Γ[AM ] with the

anomaly. The fact that the covariant anomaly fails to fulfill eq. (3.8) can be traced back to

the form of the regulator used in eq. (3.2). In fact, by a different choice of regulator [31] one

can arrive at the so-called consistent form of the anomaly which does satisfy eq. (3.8). As a

matter of fact, the covariant and consistent currents whose divergences are proportional to

the corresponding anomaly are related by local counterterms (that is, local functionals of

the gauge and Lorentz connections). Their transformation under the symmetry considered

precisely gives the difference between the covariant and consistent anomalies [24]. As far

as cancellation of anomalies is concerned the two forms are equivalent. For many purposes,

including Green-Schwarz anomaly cancellation, the consistent form of the anomaly is more

convenient. Explicit expressions for the consistent anomaly in d dimensions can be derived

from the anomaly polynomial via the Wess-Zumino descent equations. The anomaly poly-

nomial I is a formal d + 2 form which is a polynomial of order d/2 + 1 in the two-forms F

and R, the field strengths of the gauge and Lorentz connections. For instance, in four and

six dimensions, the anomaly polynomial for a spin 1/2 field reads:9

I(R,F ) =
1

3!(2π)2

(

−
1

8
Tr F Tr R2 + Tr F 3

)

, (3.9)

I(R,F ) =
1

4!(2π)3

(

dr

240
Tr R4 +

dr

192
(Tr R2)2 −

1

4
Tr R2 Tr F 2 + Tr F 4

)

, (3.10)

where dr denotes the dimension of the representation labeled by r. From this, the anomaly

is calculated by writing I as the derivative of the Chern-Simons form ω, whose variation

is the derivative of the anomaly:

I = dω δω = dA . (3.11)

9All Products are to be read as wedge products. The trace over the R’s is taken in the fundamental of

SO(d) and all generators are hermitian.
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These relations are known as the Wess-Zumino descent equations. The condition that the

total anomaly be zero is equivalent to the vanishing of the total anomaly polynomial (that is

the sum of the contributions from different fields). Anomalies whose polynomial factorizes

as in the second and third term in eq. (3.10) are called reducible, otherwise they are called

irreducible. Reducible anomalies might be canceled by the Green-Schwarz mechanism [32]

that involves p-form fields with anomalous tree level couplings to the Chern-Simons forms.

As observed in [14, 16, 18–20], the Green-Schwarz mechanism can also give contributions

to the localized anomaly, which is also known as the inflow mechanism. These inflow

contributions are always of the form

I(p) ∧ I ′(q) ∧ δ(m) , p + q + m = d + 2 , (3.12)

where the p-form I(p) is as polynomial invariant under the full d-dimensional symmetries,

the q-form I ′(q) is a polynomial that is only invariant under the symmetries of the fixed

point and δ(m) is the δ function peaked at the singularity (here interpreted as an m-form).

As we will see in the following, part of the localized anomalies generated by bulk fermions

are of that type and hence can be canceled by an appropriate Green-Schwarz contribution.

3.1 Localized gauge anomalies in 6D orbifolds

We will now consider the six dimensional orbifold R
4×R

2/Zn with arbitrary integer n. The

Zn symmetry consists of the rotation with angle 2π/n around the origin and the geometry of

the two extra dimensions is the (infinite) cone with opening angle 2π/n. Compactifications

(i.e. orbifolds of the type T 2/Zn with possible Wilson lines) will be considered in section 4.

However, the local geometry of these spaces in the vicinity of a fixed point is identical to the

non-compact case and the results of this section are directly applicable. To define a proper

Zn action on the fermions, eq. (3.3), we note that (PL)n = −1 and hence we demand the

same for the internal twist, (PG)n = −1. Notice that with G we refer to the entire internal

symmetry group that besides the local symmetries can contain global ones such as flavour

or R-symmetries. Correspondingly the twist PG has to be viewed as a product of several

factors which, in particular, contains the gauge twist in the appropriate representation.

The contribution to the gauge anomaly of a 6d spin 1/2 fermion with positive chirality10

at a Zn orbifold fixed-point can be written as

AG =
1

(2π)3
Tr(ΛF0A2) δ(y) , (3.13)

A2 =
1

8
εαβγδ

(

1

24
RαβABRγδ

AB − FαβFγδ

)

, (3.14)

F0 =
iπ

n

n−1
∑

k=1

1

sin(πk/n)
(PG)k . (3.15)

Some details of the derivation of eq. (3.18) from eq. (3.2) are presented in appendix B.

Here F0 can be seen to originate from the projector Q in eq. (3.2) once the functional

10For negative 6d chirality an additional sign has to be included.
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and Γ traces are performed and the bulk anomaly is separated. Notice that the δ-function

singles out the 4d field strengths of H ⊂ G and SO(4) ⊗ SO(2) ⊂ SO(6) respectively.

It will be more convenient for our purposes to convert the anomaly eq. (3.13) first into

the consistent form11 and subsequently deduce the anomaly polynomial from which the

anomaly descends via eq. (3.11). The result is

−
1

3!(2π)3

(

Tr F0F
3 −

1

8
Tr R2 Tr F0F

)

δ(y) . (3.16)

Let us stress here that eq. (3.16) is truly a four dimensional anomaly since the matrix F0

is constant on each irreducible representation of H. However, eq. (3.16) suggests that we

interpret F0 as some kind of background field strength supported at the singularity12

〈F 〉 = −F0 δ(y) . (3.17)

Indeed, by replacing F → 〈F 〉+ F in the 6d polynomial eq. (3.10) we precisely13 arrive at

eq. (3.16). In other words there should be some gauge connection 〈A〉 that is pure gauge in

the bulk (so that its fields strength 〈F 〉 is supported at the fixed point) and that generates

the Wilson line PG encircling the singularity. Superficially, the definition eq. (3.15) seems

to have little to do with such a background field. However, one can actually perform the

finite sum in eq. (3.15) analytically. We present the calculation in appendix C, the result

is

F0 = −i log(−PG) . (3.18)

This is quite remarkable as it implies that the Wilson line generated by gauging away the

background field eq. (3.17) is

exp(−i

∮

〈A〉) = exp(−i

∫

〈F 〉) = −PG , (3.19)

i.e. the orbifold twist around the singularity (up to a sign). However there are a few

points worth observing. Firstly, the quantity F0 is not really Lie algebra valued for general

PG . The reason is the multivaluedness of the logarithm in eq. (3.18). As we will see below,

an important consequence of this is that after imposing cancellation of the 6d irreducible

gauge anomaly, the remaining irreducible 4d gauge anomaly has an integer coefficient.

This is essential if localized fermions are to cancel this anomaly. Secondly, PG might also

contain global symmetries. They can formally be promoted to local symmetries with a

fixed background field configuration. The last point concerns the sign inside the logarithm

in eq. (3.18). As we will also see below, this generates a term in the anomaly that can

be canceled by the Green-Schwarz mechanism. As a matter of fact, this additional sign is

actually absent if one considers an additional Z2 twist in the Lorentz bundle. Notice that

11In fact, all we have to do is to add a Bose symmetrization factor 1/3 to the linearized terms of the cubic

gauge anomaly. The nonlinear terms are then completely fixed by the form of the consistent anomaly.
12Here we interpret the δ function as a two form.
13Notice that there is a combinatorial factor of 4 in the pure gauge anomaly and a corresponding factor

of 2 in the mixed one. Also note that 〈F 〉 ∧ 〈F 〉 = 0 as δ ∧ δ = 0.
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for particles of integer spin an angle of rotation of 2π/n is indistinguishable from 2π/n+2π.

For fermions however, these two rotations differ by an overall sign and hence instead of

PL one can as well consider P̃L = −PL. For odd n one has (P̃L)n = +1 and implementing

this twist in the orbifold symmetry then implies (PG)n = +1. It is easy to evaluate the

corresponding sum with this modified PL. We again find eq. (3.13) but now F0 is given by

F0 = −i log(+PG) . (3.20)

Let us now focus on the pure gauge anomaly and specialize to the case where the

Wilson lines are given by inner automorphisms14 as described in section 2. Let us first get

rid of the sign inside the log in eq. (3.18) by writing

log(−PG) = log′(PG) − iπ , (3.21)

where the branch cut of log′ lies just below the positive real axis. Applying eq. (3.21) to

eq. (3.18), we see that we are left with two contributions

−
1

2π
Tr

[

F0F
3
]

= −
1

2πi
Tr

[

log′(PG)F 3] +
1

2
Tr

[

F 3
]

. (3.22)

The second term is independent of the Wilson line. It is the product of a G invariant

polynomial times a δ-function two-form, i.e. it takes the form of eq. (3.12) with q = 0.

Consequently, it can be canceled by anomaly inflow from the bulk. The first term in

eq. (3.22)

Ĩ ≡ −
1

2πi
Tr

[

log′(PG)F 3
]

, (3.23)

defines a localized anomaly that cannot in general be canceled by the inflow mechanism.

The localized anomaly in the form eq. (3.23) is the starting point for a detailed evaluation.

This is best described with concrete examples and we postpone it to section 5. For the

remainder of this section we want to prove an important theorem. Using the form of the

inner automorphism eq. (2.7) we rewrite eq. (3.23) as

Ĩ = Tr
[

−V F 3 + bV cF 3
]

(3.24)

Recall that the shift vector V is an element of the Cartan subalgebra; here it has to be

interpreted in the representation of the fermion. In eq. (3.24) we have defined the floor

function bxc as the closest integer ≤ x. First consider the case where the inequality in

eq. (2.11) holds, i.e. the highest root is projected out by the inner automorphism. In this

case V corresponds to a U(1) factor of H. The charges qr of the irreducible H representa-

tions labeled by r are normalized as described in section 2. Notice that the first term in

eq. (3.24) actually takes on the form of a 6d bulk anomaly. Its irreducible part has to be

canceled with other bulk fermions, while its reducible part

∼ Tr(V F )Tr(F 2) =
∑

r

qr FU(1) Trr F 2 (3.25)

14For outer automorphisms, restrictions on the matter representations apply (see, e.g. ref. [6]) which

makes the general treatment more involved.
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turns into a 4d reducible anomaly (i.e. a mixed U(1) nonabelian one) as the first trace

projects onto the U(1) generators. The remaining irreducible 4d anomaly is thus

Ĩ =
∑

r

bqr/ncTrr
[

F 3
]

. (3.26)

The sum goes over all irreducible H representations as determined from the branchings of

the corresponding irreps of G in the bulk. We see that the coefficients of the irreducible

fixed point anomaly are integers. This is indeed very satisfactory. It guarantees that we can

cancel these irreducible anomalies by introducing brane localized fermions in appropriate

representations. Had we been left with any non-integer coefficients, there would be no way

of obtaining a consistent theory at the fixed point. With the information from eq. (3.26)

it is now possible to obtain predictions on the localized fermion content. For the modified

Lorentz twist P̃L the following simple modifications apply: In eq. (3.23) log′ is replaced by

log and the arguments of the floor functions in eqs. (3.24) and (3.26) are shifted by 1/2.

The case in which the equality in eq. (2.11) holds and one encounters the enhanced

symmetry is more involved.15 The unbroken group H contains a simple factor, Hθ having

the root −θ as one of its simple roots. The localized anomaly of the other group factors can

actually be calculated as above by formally considering the branching of Hθ → H′
θ ⊗U(1).

It remains to calculate the anomaly of Hθ. Note that in 4d only the SU(N) groups have

anomalies. If N > 3 one can calculate the anomaly of H′
θ = SU(N − 1) as above which is

an integer, say k TrN−1 F ′3 if normalized to the fundamental. It is then clear that one can

extrapolate this to obtain the full Hθ anomaly, which is simply k TrN F 3. On the other

hand, if N = 3 there is no irreducible anomaly for the SU(2) subgroup and one would

have to track the reducible (mixed) gauge anomalies instead in order to reconstruct the

irreducible SU(3) anomaly. However since there are only a few instances where this occurs

we simply have checked case by case that all these anomalies are integer as well.16 This

concludes our proof that all the irreducible brane anomalies are integer.

To conclude this section we would like to comment on the relation between the local 4d

spectrum created by the bulk fermions and the localized anomaly. With local 4d spectrum

we mean the fields that are not forced to vanish at the singularity (note that we do not

include brane fermions in this definition). Naively, one could think that this spectrum

determines the anomaly appearing at the fixed point. This is true only for n = 2, 3 where

the anomaly computed from the local spectrum equals four (n = 2) or three (n = 3) times

the localized anomaly.17 In these cases one can embed the singularity in a torus orbifold

with four or three equivalent fixed points (see section 4). The zero mode spectrum is the

same as the local spectrum and the anomaly of the former is distributed evenly over the

15In particular, V and bV c are no longer separately constant on each irreducible representation of H.
16In many cases it is possible to embed H in different ways into G so that Hθ actually corresponds to

different factors of H. For instance, consider the breaking of E7 → SU(3)⊗SU(6). Depending on the choice

of the shift vector, both Hθ = SU(3) and Hθ = SU(6) are possible. In the former case we can conclude that

the SU(6) anomaly is integer while in the latter case this holds for the SU(3) factor. As both embeddings

should be physically equivalent, we conclude that no fractional coefficients occur.
17This result can serve as an illustration that the localized anomaly is not integer before the bulk is made

anomaly free.
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fixed points. For n > 3 the localized anomaly appears to be rather unrelated to the local

spectrum.

3.2 Localized gravitational anomalies in 6D orbifolds

In this subsection we are interested in possible anomalies of general coordinate transforma-

tions (sometimes referred to as Einstein transformations, denoted by δGC) and local Lorentz

transformations (δL). Pure gravitational anomalies are known to exist in d = 2 mod 4 di-

mensions, while mixed gauge-gravitational ones can appear in any dimension. Moreover, it

has been shown [24] that anomalies of local Lorentz and general coordinate invariance are

equivalent in the sense that one can introduce counterterms (local functionals of the met-

ric/vielbein) which violate both symmetries and can be used to shift the anomaly to either

pure Lorentz or pure Einstein form [24]. In other words, these counterterms can be used to

cancel one kind of anomaly but not both. An Einstein anomaly leads to non-conservation

of energy-momentum while a Lorentz anomaly results in an energy-momentum tensor that

is not symmetric. We will compute both type of anomalies and find that the anomaly

naturally occurs in Lorentz form.

We will adopt the following index convention: Greek letters take values 0 . . . 3, lower

case Latin letters 4, 5 and capital Latin letters take values 0 . . . 5. Moreover, letters from

the beginning of the alphabet (A,B, a, b, α, β) are flat space (Lorentz) indices, while letters

from the middle of the alphabet (M,N,m,n, µ, ν) denote curved (Einstein) indices. Notice

that at the singularity we can freely split vielbein and metric into purely four and extra

dimensional components as the mixed-index quantities such as eµ
a are zero by virtue of the

boundary conditions (or, equivalently, the orbifold projection). However, care is needed if

extra dimensional derivatives of these quantities occur.

In particular, we are interested in those transformations generated by ξm and Λab,

i.e. the “extra dimensional transformations”. In the following we will refer to them as

remnant gravitational symmetries. From the point of view of an observer living at the

singularity they are merely gauge symmetries with the important peculiarity that the

corresponding connections are actually composite fields made out of the vielbein em
a.

Although these symmetries are eventually broken spontaneously in the flat vacuum and

only a global SO(4)⊗SO(2) symmetry survives, we need to make sure that they are anomaly

free in a generic gauge and gravitational background to ensure quantum conservation of

energy-momentum.18

Consistency with the orbifold projection implies that Λab is non-vanishing at the fixed

point (its antisymmetry implies that its parity is given by detPL = 1). On the other hand

ξm has to vanish at the fixed point, while its derivatives may be unconstrained: For generic

Zn orbifolds ∂[nξm] and ∂mξm are non-vanishing while for the special case n = 2 any first

order derivative ∂nξm survives the projection.

First consider general coordinate invariance δGC. The fermion transforms simply as

δGCψ = ξm∂mξ . (3.27)

18Anomalies of these symmetries have been studied in the context of D-branes where they are also known

as “normal-bundle anomalies” [33].
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We could have added a compensating local Lorentz transformation to render the derivative

covariant, but these additional terms would cancel due to the boundary condition. By

replacing the gauge transformation Λ with the operator ξm∂m in eq. (3.2) and evaluating

the trace with the heat kernel techniques developed in appendix B, we find for the anomaly

AGC = −
1

(2π)3
∂mξm Tr (A1 + A2) F0 δ(y) . (3.28)

where we have defined the quantity

A1 =
1

96
εαβγδRαβmnRγδ

mn , (3.29)

and A2 has been defined in eq. (3.14). We can see that only the “scale transformations”

generated by ∂mξm are anomalous.19 The latter constitute a (non-compact) U(1) subgroup

of the GL(2) transformations generated by ∂mξn, and hence it is already in its consistent

form. As a matter of fact, we can get rid of this anomaly by adding the following local

non-polynomial counterterm to the action

SCT =
1

(2π)3
hTr F0(A1 + A2)δ(y) , (3.30)

where h ≡ log det em
a acts as a Goldstone boson for scale transformations:

δGCh = ∂mξm . (3.31)

The counterterm SCT has an anomalous variation that exactly cancels the anomaly AGC.

It is very similar to the kind of counterterms found in ref. [24] that shift the anomaly

back and forth from Lorentz to Einstein form. Note that the above counterterm is in

fact invariant under δL but does generate an additional contribution to the trace anomaly.

However, as the conformal symmetry is violated anyways (at least by quantum effects), we

are not concerned by this fact.

To compute the Lorentz anomaly, we use for the generator Λ = Λ45J
45, where J =

−σ3/2 (see appendix A) and Λ45(x) is the local angle of rotation. We thus have to evaluate:

AL =
1

(4π)2n
Λ45

n−1
∑

k=1

cos(πk/n)

sin2(πk/n)
Tr (PG)kA2 δ(y) . (3.32)

The difference to the gauge anomaly lies in the trace over the Γ matrices: The additional

factor of σ3 cancels the one coming from the chirality matrix Γ, giving rise to a factor of

cos(πk/n) instead of sin(πk/n). Notice that this implies that for n = 2 there is no Lorentz

anomaly. Using relation eq. (C.12) we cast the Lorentz anomaly into the form

AL =
1

8π2
Λ45 Tr

[{

n

(

F0

2π

)2

−
1

12

(

R0

2π

)

}

A2

]

δ(y) , (3.33)

19This is quite unlike the case of Einstein anomalies on smooth manifolds, where at most the SO(d) ⊂

GL(d) subgroup generated by the antisymmetric part of the tensor ∂mξn is anomalous.
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where we have defined the constant20

R0 = 2π

(

n −
1

n

)

. (3.34)

The occurrence of a local Lorentz anomaly signals a quantum energy momentum tensor

that is not symmetric. In particular, in our example there is a contribution to T45 − T54

that is proportional to a δ-function. One could easily write down the counterterms of

ref. [24] to shift this anomaly to Einstein form. We would find non-conservation of energy

momentum with a source term that is proportional to a derivative of a δ-function. Let us

try to interpret the form of the Lorentz anomaly, eq. (3.33). Call the remant SO(2) local

Lorentz symmetry U(1)L. Since it is an Abelian anomaly, conversion into consistent form

only requires dividing the pure U(1)3L anomaly by 3. Defining the U(1)L field strength

R′ =
1

2
Rµν

45dxµdxν (3.35)

one can write the consistent anomaly as

Acons
L =

1

8π2
Λ45 Tr

[

{

n

(

F0

2π

)2

−
1

12

(

R0

2π

)}{

1

24
R2

SO(4)+
1

36
R′2−

1

2
F 2

}

]

δ(y) , (3.36)

The trace in eq. (3.36) goes over G and SO(4) indices. Notice that F 2
0 is a nontrivial G

valued matrix while R0 is just a constant. As before, F0 commutes with all H generators

and hence it is also a constant on each irreducible H-representation. Notice that as far

as the bulk anomalies are concerned, the second and third terms in eq. (3.10) (that is the

reducible anomalies) are usually not canceled amongst 6d fermions alone but require the

existence of Green-Schwarz two-forms with appropriate anomalous couplings. The natural

question is thus whether the anomaly eq. (3.36) can be canceled by adding suitable brane

localized counterterms to this Green-Schwarz Lagrangian. As explained after eq. (3.12)

this requires the anomaly to be a product of a bulk and a brane form. Clearly, this is not

the case for the anomaly eq. (3.36). While terms proportional to

Tr F 2 , Tr R2 = Tr R2
SO(4) + 2R′2 (3.37)

could be canceled that way, terms proportional to

Tr F 2
0 F 2 (3.38)

and others remain. One concludes that localized fermions or axions are needed for their

cancellation. This may come as a surprise, as localized matter is not necessarily expected to

be charged under the U(1)L symmetry from a purely field theory point of view, although

it is a logical possibility (i.e. such couplings are allowed by the unbroken gravitational

symmetries). On the other hand, if the field theory is the low energy limit of some string

theory, localized fields originate from twisted string states, i.e. closed strings on the orbifold

20It can be shown that this is the amount of scalar curvature localized at a conical singularity of opening

angle 2π/n for arbitrary real n.

– 17 –



J
H
E
P
0
3
(
2
0
0
7
)
0
8
3

Figure 3: The four different Zn orbifold geometries in 6d, corresponding to n = 2, 3, 4, 6 (from left

to right). We show the embedding of the orbifold fundamental domain (shaded) in the torus (thin

line) as well as the fixed points (dots). The shaded regions have to be folded over the center line

and the edges (thick lines) have to be identified. The resulting geometries are “pillows” with three

or four corners. Note that the edges correspond to nonsingular bulk points.

that encircle the conical singularity. They inherit the transformation under any unbroken

gravitational symmetry just as they do for conventional gauge symmetries. It is therefore

quite interesting that purely field theoretical anomaly cancellation arguments predict that

localized states are charged under the bulk gravitational symmetries and hence they could

naturally be zero modes of twisted closed strings.

Let us conclude this section by noting that for a complete treatment of the subject we

would have to include the contribution of other chiral bulk fields of different spin such as

gravitinos or self dual forms. This is outside the scope of the present paper and is left to

future research.

4. Compactifications

Up to now we have dealt with orbifolds of infinite volume, i.e. 4d Minkowski space times

the infinite cone obtained by modding out R
2 by a discrete Zn subgroup of its SO(2)

symmetry. Naturally, the phenomenologically interesting models are based on compact

spaces such as the torus T 2. However, the vicinity of the fixed points of such orbifolds is

totally indistinguishable from the infinite cone and the compactness of the space does not

at all influence the localized anomaly occurring there. This section serves to describe in

more detail the embedding of the conical singularities into compact orbifolds.

The kind of orbifold singularities considered so far occur most commonly in models that

are obtained by modding out a two dimensional torus T 2 by a discrete finite symmetry. It

is well known that the only subgroups of GL(2) that map the torus lattice onto itself are the

Zn rotations with n = 2, 3, 4, 6. The topology of the resulting spaces are “pillows” where

the two sides of the pillows represent the bulk and the corners the conical singularities or

fixed points. We depict the four possibilities in figure 3. Notice that T 2/Z4 contains two

Z4 and one Z2 singularity and T 2/Z6 contains one Z2, Z3 and Z6 singularity each. The Zn

rotation has to be represented on the fields21 and defines a Wilson line PG around the fixed

point located at the origin. In addition, one can allow for continuous or discrete Wilson

lines associated to lattice translations [34]. However, geometric constraints apply. For

21For the sake of simplicity we only treat the case of scalars in this section. The generalizations to

particles of nonzero spin involves the matrix PL in addition to PG and is straightforward.
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Figure 4: Illustration of the second relation in eq. (4.2) for the Z2 pillow. If the path encloses the

four corners of the space in a cyclic order, it becomes contractible and the associated Wilson line

must be unity (the dashed lines represent parts of the path on the back side of the pillow).

instance, any lattice translations T λ (along some lattice vector λ) and discrete Zn rotation

P satisfy

PT λP−1 = TPλ , T λT λ′

= T λ′

T λ = T λ+λ′

. (4.1)

(Note that Pλ is another lattice vector). Both relations follow from elementary geometry

in two dimensions. The representation of T λ on the fields (the torus Wilson line T λ
G ) and

the Zn Wilson line PG around the origin then have to obey analogous constraints. As a

matter of fact, if the torus Wilson lines are of finite order, (T λ
G )m = 1, one can interpret the

geometry as an orbifold of a larger torus with no Wilson lines on them [18]. The resulting

orbifold group can be nonabelian, which then allows for rank reducing breakings of the

gauge group [11, 35]. However, a simple solution to the constraints eq. (4.1) consists of

taking PG to be an inner automorphism and choosing T λ
G to lie in the Cartan torus as well.

In that case we have22 (T λ
G )n = 1 and the resulting orbifold group is Abelian.

We will refer to this description in terms of the covering torus and its Wilson lines as

the upstairs picture. On the other hand, the maybe simpler and more physical approach is

the downstairs picture in terms of the fundamental domain of the orbifold, i.e. the pillow

geometries depicted in figure 3. To each of the corner singularities of these spaces one

associates a Wilson line P
(f)
G corresponding to the rotation around that given fixed point

which is a product of torus and Zn Wilson lines. The geometric constraints of the upstairs

picture then translate into constraints onto the P
(f)
G , for instance

(

P
(f)
G

)nf = 1 , P
(1)
G P

(2)
G · · ·P

(ν)
G = 1 , (4.2)

where ν is the number of fixed points and nf is the order of the fixed point. The ordering

of the Wilson lines is counterclockwise along the corners of the pillow and cyclic permu-

tations of the last identity hold. While the meaning of the first relation in eq. (4.2) is

obvious, the second identity has another simple geometric interpretation that is illustrated

in figure 4. If the T λ
G commute with PG the only additional constraints to eq. (4.2) are that

the P
(i)
G commute. For nonabelian orbifolds however, the downstairs constraints become

more complicated. In the most general case, the P
(i)
G have to form a representation of the

(nonabelian) fundamental group of the pillow space. We refer the reader to ref. [11] for

22To prove this one has to use the geometric identity
Pn−1

k=0 P kλ = 0.
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some possible generalizations of this downstairs construction that cannot be lifted to the

upstairs picture.

In the downstairs picture it is particularly transparent that the compact torus orbifolds

are locally equivalent to non-compact orbifolds and all one has to know for the physics of

the fixed points are the local Wilson line one encounters by encircling the singularities. In

particular, the localized anomaly is completely known from this local data.

We would like to perform a consistency check on the local Lorentz anomaly found

in section 3.2 by taking the compactification limit. To this end, consider first a torus

compactification and take the limit of vanishing internal volume. Clearly the remnant

local Lorentz symmetry is spontaneously broken, but in the limit where all heavy KK

modes decouple it survives as a global symmetry. As can easily be checked, on the 4d zero

modes of a 6d Weyl fermion this symmetry acts as a chiral U(1):

(

ψL

ψR

)

→ exp

(

−
i

2
Λ45γ

5

)

(

ψL

ψR

)

. (4.3)

Hence the spectrum of zero modes is not anomaly free but instead we find23

A
(0)
L,tor = 2 ·

1

8π2
Λ45 Tr A2 . (4.4)

Note that this is unlike the case of gauge symmetries which always result in vector-like

theories in 4d.

Now orbifold this model on T 2/Zn. The Wilson lines around the singularities determine

which of the two zero modes (if any) survives the projection. Let us — for simplicity —

assume a U(1) gauge symmetry. The expected zero mode anomaly is

A
(0)
L,orb = n0 ·

1

8π2
Λ45 Tr A2 , (4.5)

where the integer coefficient n0 counts the number of zero modes (only n0 = 0, 1 occur).

Note that the anomaly is the same independent of the chirality of the 4d zero mode. The

localized local Lorentz anomaly, integrated over the compact dimension, should equal the

difference of the zero mode anomaly for the chiral U(1) between the orbifold and torus

compactification:
∫

AL = A
(0)
L,orb −

1

n
A

(0)
L,tor . (4.6)

eq. (4.6) can be checked from eq. (3.33) directly for n = 2, 3, 4, 6 and for arbitrary PG . In

particular, for n = 2 there is always precisely one zero mode, independent of the Wilson

line, implying that eq. (4.6) gives zero in accordance with our analysis of section 3.2.

23Of course, this anomaly can also be obtained from the expression for the 6d anomaly. The reason why

this term appears to be absent for finite R is that the limits s → 0 (s is the regulator used to compute the

anomaly) and R → 0 (R being the volume modulus of the torus) do not commute. If one takes the latter

limit first one indeed arives at eq. (4.4).
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5. Examples in supersymmetric theories

In this subsection we would like to illustrate our so far very abstract discussion with some

examples that are possibly relevant to 6d supersymmetric orbifold GUTs. We will focus

mainly on the irreducible gauge anomaly of type TrF 3 as it gives the most stringent

restrictions on the localized spectrum. After commenting on the SUSY breaking features

of a 6d orbifold fixed point, we will review 6d bulk anomaly cancellation conditions and

finally apply the results of section 3 to some interesting GUT gauge groups.

5.1 Supersymmetry breaking

The main success of orbifolds is their capacity to produce chiral boundary-conditions and

spectra. Given that the orbifold breaks chirality it is not surprising that SUSY is also

broken at an orbifold fixed point. Due to the presence of the PL factor in the orbifold

twist particles acquire spin-dependent boundary conditions. Moreover, in general there is

an additional explicit R-symmetry twist due to the fact that (PL)n = −1 for fermions.

For instance, while for gauge fields we have (PG)n = +1, for gauginos we actually need

(PG)n = −1. One concludes that PG has to include an additional-R symmetry twist. How

much SUSY is locally broken depends on the order n of the fixed point as well as the form

of the R-symmetry twist, as we will see shortly. The amount of global (low energy) SUSY

breaking depends on the (mis)match of the supercharges locally preserved at different fixed

points. The latter is generally referred to as Scherk-Schwarz (SS) SUSY breaking and is

widely used in string and field theoretical models. To find the surviving supercharges at

a given singularity, we have to look more closely at the R-symmetry. Pure N = (1, 0)

supersymmetric gauge theory in 6d is invariant under an SU(2)R symmetry, which acts on

gauginos only but not on the gauge fields. Gauginos are doublets under this symmetry and

obey a symplectic Majorana constraint,

(ψi)∗ = εijCψj , (5.1)

where C is the 6d charge conjugation matrix and εij is the antisymmetric tensor of SU(2)R.

Without loss of generality we can choose the R symmetry twist to be24 exp(2πi pR/n σ3)

with pR = r − 1/2. Eliminating ψ2 with the help of the constraint eq. (5.1), the remaining

ψ1 is simply twisted by a phase25

PR = exp(2πi pR/n) . (5.2)

In terms of the 4d chiral spinors ψL and ψR (see appendix A) the orbifold constraints on

the gauginos of H imply26

ψL(y = 0) = exp(2πi (r − 1)/n)ψL(y = 0) ,

ψR(y = 0) = exp(2πi r/n)ψR(y = 0) . (5.3)

24This might not simultaneously be possible at different fixed points, in which case we encounter SS

supersymmetry breaking. See ref. [36] for a recent application in six dimensions.
25For n odd and the Lorentz twist P̃L (See section 3) the additional R-symmetry twist is integer, pR = r.

We will not present any examples for this case which in fact works very similar.
26Flipping the 6d chirality of the gaugino just flips the 4d chirality in eq. (5.3).
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We see that for r = 0 mod n (r = 1 mod n) it is ψR (ψL) that locally survives the

projection, leading to N = 1 unbroken SUSY. For any other value of r both 4d gauginos

vanish, implying complete breakdown of SUSY. For later purposes let us introduce the

periodic Kronecker symbol δr,n which by definition equals one for r = 0 mod n and zero

otherwise. The amount of 4d supersymmetry at the fixed point can then be expressed as

N = δr,n + δr−1,n . (5.4)

One sees that n = 2 fixed points always have N = 1 supersymmetry, while for n > 2 one

can have N = 1 or N = 0. Note that in the Z4 and Z6 compact orbifolds there is actually

a Z2 fixed point present. This means that locally some SUSY survives in these cases.

Let us now introduce matter hypermultiplets. The R-symmetry twist acts on the

hyperscalars only, implying that we now need (PG)n = −1 for the multiplet as a whole. In

general, this requires additional Wilson lines for matter fields. We will see some examples

in section 5.3. It is important to check that any symmetry used in orbifolding is anomaly

free in the unorbifolded theory [15]. For the SU(2)R twist(s) this is trivially the case. If

the additional Wilson lines in the matter sector involve U(1)’s, this may provide further

constraints.

Next, we would like to comment on models with extended N = (N+, N−) SUSY. The

R-symmetry group is USp(2N+)⊗USp(2N−) [37]. In particular, for the case of N = (1, 1)

SUSY, it is SU(2)R ⊗ SU(2)′R. The (say) left handed vector multiplet is paired up with a

right handed adjoint hypermultiplet to form a complete N = (1, 1) vector multiplet. With

respect to the second SU(2)′R, the vector multiplet is a singlet and the hypermultiplet a

doublet obeying the reality constraints

(Ha
i )∗ = εabε

ijHb
j (ψa)∗ = εabCψb . (5.5)

Without loss of generality we can choose the SU(2)′R twist to be proportional to σ3 and

eliminate the a = 2 components of the hypermultiplet with the above constraint. The

action of the total R symmetry twist on ψ1 can then be parametrized as

P ′
R = exp(2πip′R/n) , p′R = r′ −

1

2
. (5.6)

The amount of supersymmetry surviving at the fixed points can again be computed by

determining the non-vanishing fields at the singularity. It turns out to be

N = δr,n + δr′,n + δr−1,n + δr′−1,n . (5.7)

One sees that for n = 2 only N = 2 occurs, while for n > 2 we can break down to N = 2,

N = 1 and N = 0. This has lead people to consider n > 2 orbifolds [9]. However as far

as low energy supersymmetry is concerned one can achieve N = 1 on a Z2 orbifold by

invoking the SS mechanism.

5.2 Bulk anomaly cancellation

In this subsection we compute anomaly free spectra in 6 spacetime dimensions. We will

focus here on the irreducible gauge anomaly only, that is the nonfactorizable trace of four
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generators. In addition, the cancellation of the irreducible gravitational anomaly has to be

enforced. Besides spin 1/2 fermion, there are contributions to the irreducible gravitational

anomaly from gravitinos and (anti) self-dual tensor fields. Finally, the reducible anomalies,

e.g. (Tr F 2)2 or TrR2 Tr F 2, can be canceled by the GS-mechanism involving two-forms, [32]

and do not place any restrictions on the 6d fermion spectrum. For previous work on 6d

anomaly cancellation see refs. [6, 17,38].

The simplest GUT group, SU(5), does not lead to nontrivial chiral 6d spectra. The

reason is that 6d matter hypermultiplets have to carry opposite chirality w.r.t. the gaugino

(See, e.g., the discussion in [39]). Furthermore, complex conjugation does not flip the

chirality of a 6d spinor, in contrast to the 4d case. In accordance with this Tr F 4 is the

same for a representation and its conjugate. Cancellation of the irreducible part of the

gauge anomaly requires the following identities for SU(5):

Tr24 F 4 = 10Tr5 F 4 + 6(Tr5 F 2)2 ,

Tr10 F 4 = −3Tr5 F 4 + 3(Tr5 F 2)2 ,

Tr15 F 4 = 13Tr5 F 4 + 3(Tr5 F 2)2 , (5.8)

We thus conclude that with fundamental and antisymmetric representations alone no “eco-

nomic” anomaly free models are possible: 6d anomaly cancellation requires in fact no less

than 10 fundamentals. The simplest nontrivial solutions would be an antisymmetric (10)

and a symmetric (15) or an adjoint multiplet of opposite chirality. The latter of course

leads to a vector-like theory in 6d. As for the former solution note that the quarks con-

tained in the symmetric and antisymmetric representations and the ones in the adjoint

have incompatible hypercharges. This means that one has to project out one of them by

orbifolding.

In fact these two solutions generalize to SU(N),27 as the SU(5) relations eq. (5.8) have

a straightforward generalization

Trr F 4 = c4 TrN F 4 + c2 TrN (F 2)2 , (5.9)

with c4 = 2N,N + 8, N − 8 and c2 = 6, 3, 3 for the adjoint, symmetric tensor and antisym-

metric tensor representations respectively.

In the SO(10) case there do exist interesting anomaly free 6d spectra as can be seen

from the relations

Tr45 F 4 = 2Tr10 F 4 + 3(Tr10 F 2)2 , (5.10)

Tr16 F 4 = −Tr10 F 4 +
3

4
(Tr10 F 2)2 , (5.11)

The minimal matter content would thus consist of two 10 hypermultiplets in the bulk,

while further 10’s and 16’s should occur in pairs. Finally, E6, E7 and E8 do not have

any independent fourth order invariants and thus the adjoint representation (as any other

representation) does not have an irreducible bulk anomaly.

27See Ref [7,12] for 6d models with an SU(6) GUT group.
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5.3 Localized anomaly cancellation

Since the fixed points are four-dimensional, only SU(N) factors of H will potentially con-

tribute to the irreducible gauge anomaly. We will convert all anomalies to the fundamental,

i.e. we will express everything in terms of the quantities

IN ≡ TrN F 3 . (5.12)

For G = SU(5), let us fix the matter content to an adjoint hypermultiplet of opposite

chirality w.r.t. the gauge multiplet. The local breaking to the standard model is achieved by

deleting the third (equivalently second) node of the Dynkin diagram, which is accomplished

by the shift vector

V =
1

n
µ(3) . (5.13)

The 24 branching rule is given by

24 → (3,2)1 ⊕ (3,2)−1 ⊕ adj(SM) , (5.14)

where the generator of the U(1) is given by nV = µ(3). As explained in the section 5.1,

we need to multiply this gauge twist by an R-symmetry twist eq. (5.2). For the matter

hypermultiplet an additional phase exp(2πipM/n) with pM = m − 1/2 has to be added.

This can be embedded in a matter U(1), which is non anomalous in the 6d unorbifolded

theory as the trace over three adjoint generators vanishes. However, since this system is

actually N = (1, 1) supersymmetric, we can also interpret pM as the other R symmetry

twist p′R (see section 5.1) and identify m with r′. Following section 3.1 one finds that the

gaugino contributes

Ĩ24 =

(

−
1

n
−

pR

n
+ b1/n + pR/nc

)

I3 +

(

1

n
−

pR

n
+ b−1/n + pR/nc

)

I3 (5.15)

As before, bxc stands for the floor function defined as the closest integer k ≤ x. The two

floor functions cancel unless r = 0, 1 mod n (in which case they give unity), hence

Ĩ24 = 2

(

−
2

n
+ δr,n + δr−1,n

)

I3 , (5.16)

where the Kronecker-δ has again to be continued periodically. The matter multiplet con-

tributes −Ĩ24 with r replaced by r′, hence

Ĩ24 − Ĩ24′ = 2
(

δr,n + δr−1,n − δr′,n − δr′−1,n

)

I3 . (5.17)

The fractional parts cancel as expected and the remaining SU(3) anomaly has an integer

coefficient. Note that the inflow terms are zero since the adjoint is a real representation. We

can see that if the anomaly is non-vanishing it carries a coefficient 2, so that the localized

matter content has to be either one quark doublet (3,2) or two quark singlets (3,1).

Which of the quarks doublets contained in the 24 have zero modes upon compactification

depends on the Wilson lines at the other fixed points. An interesting model based on

T 2/Z3 can be constructed as follows: Break SU(5) to the standard model with the gauge
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twist eq. (5.13) and supersymmetry to N = 1 with the R-symmetry twist r = 0 and r′ = 2

at all three fixed points. This produces three quark doublets (3,2)1 from bulk zero modes,

whose anomaly is distributed uniformly over the three fixed points. The model can then

trivially be made anomaly free by completing the generations at each of the fixed points.

Of course, Higgs fields have to be added to the model. However, there does not exist a

simple SU(5) representation that contains SU(2) doublets with the correct hypercharge

w.r.t. to the quark doublets, and, hence, the Higgs sector should reside on a brane. On

the other hand, this forbids some of the Yukawa couplings, which, in addition, cannot be

generated radiatively. One probably has to extend the gauge group to SU(6) to include a

realistic Higgs sector in the model. A similar model has been developed in ref. [10] with

SO(10) as a gauge group and Higgs fields at one of the fixed points. However apart from the

problem of how to generate Yukawa interactions for two generations, that model requires

an additional mechanism to break the remaining SU(5) and in particular also suffers from

the same doublet triplet splitting problem as conventional 4d GUT models. Other — less

symmetric – constructions are certainly possible, perhaps with the quark doublets of only

one or two generations originating from the bulk. Note that there is no localized anomaly

from the gauginos on fixed points with unbroken SU(5), hence one can always introduce

complete generations (10,5) there.

Next, consider G = SO(10), which has been studied extensively in the context of

orbifold GUTs in [8–10,17,40]. Let us start with the breaking pattern SO(10) → SU(5) ⊗

U(1) which can be achieved by deleting the fourth or fifth node of the Dynkin diagram [11],

see figure 1. It thus corresponds to the shift vector

V =
1

n
µ(4) . (5.18)

The branching rules of the various low-dimensional representations read as follows.

45 → 10 ⊕ 101 ⊕ 10−1 ⊕ 240 , (5.19)

10 → 51/2 ⊕ 5−1/2 , (5.20)

16 → 1−5/4 ⊕ 53/4 ⊕ 10−1/4 . (5.21)

Looking at the charges occurring in these branching rules, we see that n V10 = 1/2 and

n V16 = 3/4 (modulo integers). One concludes that the 16 has to have an additional

orbifold phase pM = m− 1/4. The latter can be introduced without problems, since it can

be embedded in an anomaly free28 global U(1)M under which only the 16 is charged. One

can also include an additional phase pM = m for the 10 in order to account for further

local or global Wilson lines.29 Let us now focus on the possible irreducible gauge anomaly

at the 4d fixed point, that is the SU(5)3 anomaly. Normalizing to the fundamental of SU(5)

one finds

Ĩ45 =

(

−
2

n
+ δr,n + δr−1,n

)

I5 . (5.22)

28Any U(1) is trivially anomaly free in d = 6 and G = SO(10), as the trace of any three SO(10) generators

vanishes.
29In order to keep the notation simple, we generically do not indicate the dependence of pM or m on the

representation.
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In a similar fashion, we find for the 10 and 16

Ĩ10 =

(

−
1

n
+ δm,n

)

I5 , Ĩ16 = Ĩ16 =

(

1

n
− δm,n

)

I5 . (5.23)

Adding the contribution of a (say) left handed gaugino and two right handed matter mul-

tiplets 10 and 10′, the bulk anomaly is canceled. As it must be, this fermion content also

cancels the non-integer coefficient of the I5 as it is directly linked to the 6d anomaly. The

total anomaly

Ĩ45 − Ĩ10 − Ĩ10′ = (δr,n + δr−1,n − δm,n − δm′,n)I5 . (5.24)

again depends on the R-symmetry and matter phases. It vanishes for certain combinations

of r, m and m′. For instance in the n = 2 model of ref. [8, 17] it was assumed that the 10

had positive parity (m = 0) and the 10′ negative (m′ = 1) and hence no anomaly occurs.

In this case it turns out that the local spectrum30 is anomaly free for both r = 0, 1. On the

other hand consider an n = 4 fixed point and the assignments r = 0, m = 0 and m′ = 2.

Still the localized anomaly vanishes, but it is not hard to check that the local spectrum

consists of one 10 and two 5, which would not be anomaly free. This example shows that

one in general cannot determine the localized anomaly from the knowledge of the local

spectrum. Finally notice that the localized anomaly of pairs of (10,16) or (10,16) again

has no fractional coefficient.

The orbifold twist

V =
1

2
µ(2) (5.25)

leaves the Pati Salam (PS) group SU(4) ⊗ SU(2) ⊗ SU(2) unbroken. The corresponding

branching rules read

45 → (6,2,2) ⊕ adj(PS) ,

10 → (6,1,1) ⊕ (1,2,2) ,

16 → (4,2,1) ⊕ (4,1,2) (5.26)

The localized anomaly has been discussed in the context of the model of ref. [17], we include

it here for the sake of completeness. As the 6 is a real representation of SU(4), it does not

have a 4d anomaly. Hence the only contribution can come from the 16. The phases for

the 4 and 4 turn out to be V4 = 1/2 and V4 = 0. To this, one has to add a matter phase

pM = m − 1/2. From eq. (3.23) one finds for the localized anomaly

−Ĩ16 =
1

2πi

(

log′[e2πi( 1
2
+ m

2
− 1

4
)] − log′[e2πi(m

2
− 1

4
)]
)

2I4 = (−1, 1)I4 (5.27)

where the two coefficients refer to m = 0, 1 respectively. We observe that unless further

pairs of (10,16) are introduced in the bulk, one always needs to add at least a single

(4,1,1) or (4,1,1) at the fixed point. This could possibly correspond to a left handed

quark in realistic orbifold constructions.

30Recall that we define the local spectrum to be the nonzero bulk fields at the singularity.
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Next we turn to G = E6. As mentioned before, E6 does not have an irreducible 6d

gauge anomaly. Furthermore, like for SO(10), the trace over three generators vanishes so

there cannot be any anomaly inflow from the bulk to the fixed point. Let us consider the

shift vector

V =
1

3
µ(3) . (5.28)

This eliminates the third node of the Dynkin diagram but projects in the highest root θ.

The resulting gauge group is SU(3) ⊗ SU(3)′ ⊗ SU(3)′′ where α(1,2) serve as simple roots

for SU(3), α(4,5) for SU(3)′ and α(6) and −θ for SU(3)′′. The branching of the adjoint is

given by

78 → (3,3,3) ⊕ (3,3,3) ⊕ adj

→ (3,3,2)−1 ⊕ (3,3,1)2 ⊕ (3,3,2)1 ⊕ (3,3,1)−2 ⊕ . . . , (5.29)

where in the second line we have indicated the breaking of SU(3)′′. From the charges it is

clear that V333 = 2/3 and V333 = 1/3 (modulo integers). One finds

Ĩ78 = (3, 3,−6)(I3 − I ′3 − I ′′3) , (5.30)

where the coefficients refer to the values r = (0, 1, 2). For r = 0, 1 (corresponding to N = 1

supersymmetry at the fixed point, see Sec. 5.1), the minimal localized matter content that

cancels the localized anomaly is given by 3× (3,1,1) and 1× (1,3,3), or 3× (1,3,1) and

1 × (3,1,3), or 3 × (1,1,3) and 1 × (3,3,1). Let us identify the first SU(3) with color

and the second with SU(3)W ⊃ SU(2)W . Ignoring the U(1) charges for a moment, one

sees that e.g. the first choice provides three generations of leptons and quark singlets. The

missing fields have to either reside on other fixed points or come from bulk zero modes.

For the latter possibility, notice that the only bulk field that is nonvanishing at the fixed

point is a (3,3,3). Provided it is nonvanishing at the other fixed points as well and, thus,

has a zero mode, it precisely gives rise to the missing quarks. In any event, one has to

find a suitable U(1) subgroup of SU(3)W ⊗ SU(3)′′ that can act as hypercharge and is in

particular free of localized anomalies. Building a concrete orbifold model containing such a

particular local GUT breaking at one of its fixed points is beyond the scope of the present

paper and is left to future research.

As a last example consider the breaking of E7 to SU(5) ⊗ SU(3) ⊗ U(1) accomplished

by the shift vector

V =
1

n
µ(4) , n > 3 . (5.31)

(For n = 3 the gauge group is actually enhanced to SU(6)). The adjoint of E7 is the 133

and has the following branching rule:

133 → (10,3)1 ⊕ (5,3)−2 ⊕ (10,3)−1 ⊕ (5,3)2 ⊕ (5,1)3 ⊕ (5,1)−3 ⊕ adj . (5.32)

For instance, for r = 0, 1 (the R symmetry twist that preserves N = 1 supersymmetry) we

find for the anomaly

Ĩ133 = I5 − 5I3 , (5.33)
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Shift Vector Breaking Gaugino Anomaly Ĩadj

µ(2)/2 E6 → SU(6) ⊗ SU(2) 0

µ(3)/3 E6 → SU(3) ⊗ SU(3)′ ⊗ SU(3)′′ 3(I3 − I ′3 − I ′′3)

µ(2)/3 E7 → SU(6) ⊗ SU(3) −5I3 + 2I6
µ(7)/2 E7 → SU(8) 0

µ(4)/5 E8 → SU(5) ⊗ SU(5)′ I5 − 7I ′5
µ(6)/3 E8 → E6 ⊗ SU(3) 9I3
µ(8)/3 E8 → SU(9) −3I9

Table 1: The localized anomaly for different breakings of the exceptional groups E6,7,8. Note the

anomaly vanishes in 4d if the adjoint branches exclusively into real representations of the unbroken

group. It is assumed that N = 1 supersymmetry is preserved (r = 0, 1).

for any n > 3. It turns out that at least three irreducible representations are necessary

to cancel this anomaly. The possibilities are a (5,3) and two (5,1) (one or both of which

can also be replaced by (10,1)) or a (10,3), a (5,3) and a (5,1). The latter exactly gives

three generations of quarks and leptons plus an additional 5 which could serve as one of

the Higgses. Once again, including more matter fields in the bulk (in particular extending

bulk supersymmetry) changes the localized anomaly and hence these predictions. For a

model with N = (1, 1) supersymmetry and this particular breaking pattern see ref. [11].

We can see from the last two examples that if the unbroken subgroup contains two or

more nonabelian factors that have cubic anomalies in 4d, the localized anomaly cancellation

condition can be quite restrictive. Some (incomplete) list of breakings of the exceptional

groups and their anomalies is presented in table 1

6. Conclusions

In this paper we have analyzed the occurrence of localized anomalies on fixed points of

orbifolds of 4+2 dimensional smooth spacetimes. Such fixed points constitute conical

singularities obtained by gluing together the edges of the “wedge” {r, θ}, the angle theta

taking values 0 ≤ θ ≤ 2π/n. Internal (global or local) symmetries can be broken by this

procedure by identifying the 6d fields on the two edges only up to an orbifold twist (Wilson

line).

We have shown that the pure gauge anomaly of the unbroken group H ⊂ G caused

by a 6d Weyl fermion can be interpreted as coming from a background field configuration

that would be obtained by gauging away the orbifold twist. This particular form led us to

a natural splitting of the anomaly localized at the 4d fixed point into three terms

−Tr(V F 3) + Tr(bV cF 3) +
1

2
Tr(F 3) (6.1)

where V is the so-called twist vector characterizing the orbifold twist (an element of the

Cartan torus of the algebra) and bxc denotes the closest integer ≤ x. From this expression

one can derive important consequences for the 4d irreducible (i.e. nonabelian) anomaly.
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We have shown that, once the 6d irreducible bulk anomaly is canceled, the first term does

not contribute to the nonabelian 4d anomaly. On the other hand, the last term might be

canceled by a 6d Green-Schwarz four-form (or its dual, an axion). Of course, it can also

be canceled amongst fermions, for instance if a vector-like 6d fermion content is chosen.

The term is nonzero only for G = SU(N) and vanishes even there if the fermion trans-

forms in a real representations. The second term is a purely four-dimensional irreducible

anomaly that can only be removed with the introduction of appropriate localized fermions

at the singularity. Contrary to the other two terms, its coefficient is an integer, which is a

necessary condition for local anomaly cancellation to occur. We have presented numerous

examples in the context of supersymmetric orbifold GUTs.

We have also calculated the localized anomaly of 6d Lorentz symmetry and general

covariance. To this end we have identified the remnants of the 6d gravitational symmetries

at the 4d fixed point located at yf besides the corresponding 4d ones. In terms of the

6d parameters ΛAB(x, y) and ξM (x, y) they are generated by Λab(x, yf ), ∂mξm(x, yf ) and

∂[mξn](x, yf )). We find that only the first and second symmetries have localized anomalies.

While the scaling symmetry ∂mξm can be rendered consistent by adding suitable local

counterterms to the action, quantum consistency of the remnant Lorentz symmetry U(1)L
requires that localized fields are charged under it. This is rather surprising from a field

theory point of view, but occurs naturally in string theory orbifolds. The localized fields

of the low energy limit correspond to zero modes of twisted strings. The latter do in fact

transform non-trivially under U(1)L (or, more general under SO(6)) and hence are expected

to contribute to the anomaly.

Let us conclude by pointing out some interesting directions of further research. Clearly,

most of our findings can more or less directly be generalized to any codimension-two

orbifold-singularity. Of course, the structure of the d − 2 dimensional anomalies is differ-

ent, but our general findings for the gauge anomalies will not change. Another interesting

direction concerns codimension-two conical singularities of opening angles other than 2π/n

and gauge twists whose order is unrelated to the geometric twist [11]. The fact that our

results are independent of n and only depend on the δ-function like background flux 〈F 〉

points towards similar results in these cases. On the technical side however, our calcula-

tion crucially depended on the ability to define our theory on a simply connected smooth

covering space (with some constraints on the fields) which is no longer possible, even for

rational opening angles such as 2πp/q. Other, more refined tools are necessary, for instance

the form of the heat kernel on arbitrary conical singularities (see ref. [41]). The third obvi-

ous generalization concerns orbifold singularities of codimension other than two. Although

higher dimensional analogues of the finite sums in appendix C can be performed and yield

similar polynomials in the logarithm of the orbifold twist, the immediate consequences for

anomaly cancellation tend to be more involved than in the codimension-two case. The rem-

nant local Lorentz symmetry at the singularity becomes a nonabelian one and one expects

more stringent restrictions on the localized matter content to achieve anomaly cancellation.
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A. Notations and conventions

We will adopt the follwoing index convention: lower case greek letters take values 0 . . . 3,

lower case latin letters 4 . . . d− 1 and capital latin letters take values 0 . . . d− 1. Moreover,

letters from the beginning of the alphabet (A,B, a, b, α, β) are flat space (Lorentz) indices,

while letters from the middle of the alphabet (M,N,m,n, µ, ν) denote curved (Einstein)

indices. Furthermore we will denote the extra dimenisonal coordinates with y (i.e. y1 =

x4, y2 = x5) and often choose our coordinates such that the fixed point under consideration

lies at y = 0.

We will work in the Euclidean. Our d dimensional Γ matrices satisfy the Clifford

algebra

{ΓA,ΓB} = 2δAB . (A.1)

In d = 6 we write this algebra in terms of the four-dimensional γ matrices:

Γa = γa ⊗ σ3, Γ4 = 1 ⊗ σ1, Γ5 = 1 ⊗ σ2 , (A.2)

and we apply this construction recursively for higher dimensions. The SO(d) generators

are given by

JAB =
i

4
[ΓA,ΓB ] . (A.3)

The four-dimensional chirality matrix γ5 is defined as γ5 = γ0 · · · γ3 =

diag(+1,+1,−1,−1). The d dimensional chirality matrix (the analogue of γ5) is defined

as

Γ = γ5 ⊗ σ3 ⊗ σ3 ⊗ . . . (A.4)

The convention for the totally antisymmetric SO(d) tensor is ε0···d−1 = +1

The particular choice for the Γ-matrices leads to a trivial embedding of SO(4) spinor

representations into SO(d) ones:

Jαβ
Γ =







Jαβ
γ

Jαβ
γ

. . .






, (A.5)

where the subscript indicates the Clifford algebra matrices used to compute Lorentz-

generators according to eq. (A.3). Finally, in d = 6 the generator for rotation in the

45-plane is given by
1

2
ΛabJab = Λ45J45 = −Λ45 σ3

2
. (A.6)

where Λ45 is the angle of rotation.
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B. The evaluation of the heat kernel

The object formally defined as

K(x, x′, s) ≡ 〈x| exp(−s∆)|x′〉 (B.1)

is called the Heat Kernel of the Laplace type differential operator ∆. It satisfies the heat

equation (hence the name)

∂

∂s
K(x, x′, s) = −∆K(x, x′, s) , (B.2)

obeying the boundary condition

K(x′x′, 0) = δ(x, x′) , (B.3)

where δ(x, x′) denotes the delta funcion (density) in curved space. The heat kernel appears

in the calculation of anomalies, eq. (3.2) with ∆ the square of the Dirac operator,

∆ = −D2/ = −D2 + E , E = −
1

4
R +

i

2
ΓMNFMN . (B.4)

The covariant derivative on the right hand side of eq. (B.4) contains spin, Christoffel and

gauge connections, FMN stands short for F a
MNTa with the hermitian generators Ta and R

is the scalar curvature. Follwing deWitt [42] we write K(x, x′, s) as a power series in the

parameter s:

K(x, x′, s) ≡ (4πs)−d/2D1/2(x, x′) exp(−σ(x, x′)/2s)
∑

r≥0

ar(x, x′)sr . (B.5)

The quantity σ(x, x′) is called the geodesic biscalar and satisfies the differential equation

1

2
σM

; σ;M = σ , (B.6)

where the semicolon denotes covariant differentiation w.r.t. x. The correspondig boundary

condition reads

[σ](x) ≡ σ(x, x) = 0 . (B.7)

From here on the brackets denote the coincidence limit x′ = x. σ is a biscalar function

whose magnitude equals half the geodesic distance squared between x and x′. It is the

generalization of (x − x′)2/2 in flat space. The following coincidence limits hold for σ

[σ;M ] = 0 , [σ;MN ] = gMN , [σ;MNR] = 0 . (B.8)

Further coincidence limits can be obtained by repeated covariant differentiation of eq. (B.6).

The other quantity appearing in the ansatz eq. (B.5) is the van Vleck-Morette determinant

defined by the differential equation

D−1(Dσ;
M );M = d , (B.9)
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together with the boundary condition

[D] = det gMN ≡ g . (B.10)

The normalization in eq. (B.5) as well as the limit [a0] = 1 are chosen such as to correctly

reproduce the boundary condition, eq. (B.3). In other words

lim
s→0

{

(4πs)d/2D(x, x′)1/2 exp(−σ(x, x′)/2s)

}

= δ(x, x′) . (B.11)

Inserting the ansatz eq. (B.5) in the heat equation (B.2), one obtains the recursion relations

σ;
Ma0;M = 0 , (B.12)

σ;
Mar;M + r ar = D−1/2(D1/2ar−1);M

M
− E ar−1 . (B.13)

From these relations and their covariant derivatives one can obtain the coincidence limits

[ar] in a completely straightforward (but for higher r increasingly tedious) manner. The

[ar] are local covariant functionals of the curvature and field strength tensors and of their

covariant derivatives (for details on the calculation see ref. [42]).

To find the anomaly, eq. (3.2), we need to calculate

lim
s→0

lim
x′→x

Q(x, x′′)K(x′′, x′, s) . (B.14)

As mentioned in section 3, the term proportional to the identity in Q gives rise to the one

nth the d dimensional bulk anomaly,31 while the other terms produce brane anomalies.

They are proportional to

K(k)(x) ≡ lim
s→0

lim
x′→P kx

K(x, x′, s) . (B.15)

Clearly, unless x = Px, that is at the fixed point y = 0, this quantity is exponentially

suppressed in the limit s → 0 while it diverges for y = 0. We thus expect K(k)(x) to be a

distribution centered at y = 0. Indeed, one can calculate

lim
s→0

(

D(x, P kx)

(4πs)m

)

1
2

exp(−σ(x, P kx)/2s) = g̃1/2 ν−1
k δ(y) , (B.16)

where we have defined νk = det(1−P k
∗ ), P∗ being the derivative of the orbifold symmetry

transformation P ,32 and g̃ denotes the induced d dimensional metric at the fixed point.

For the evaluation of K(x), note that all terms in the sum over r with r > r0 =

(d − m)/2 vanish in the limit s → 0. The remaining terms greatly simplify when the

trace over the gamma matrices is taken in eq. (3.2). Notice that in our conventions (see

appendix A) the d-dimensional chirality matrix Γ is nothing but the tensor product of the

31The factor of 1/n accounts for the fact that we are essentially working on the covering space of the

orbifold - restricting to the fundamental domain, which equals again one nth the volume of the covering

space, compensates this factor and one obtains precisely the d dimensional result.
32P∗ is here restricted to the m dimensional subspace it acts upon non-trivially.
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d−m dimensional one Γ̃ and m/2 factors of σ3. In fact, one can show (in complete analogy

to the usual argument for anomalies on nonsingular spaces) that the coefficients ar with

r < r0 do not contribute, as they do not provide sufficient number of Γµ matrices in order

to “saturate” Γ̃. We are left with precisely the s-independent term

K(k)(x) =
1

(4π)r0 νk
g̃1/2δ(y) [ar0 ] . (B.17)

Let us now specialize to the case d = 6, m = 2. The heat kernel coefficient [a2] can be

evaluated by use of the recursion relations eq. (B.12) and (B.13).33 One finds

[a2] =
1

8
ΓαβΓγδ

(

1

24
RαβMNRγδ

MN − FαβFγδ

)

+ . . . (B.18)

where the dots denote terms with a lower number of Γα’s. Finally we insert the explicit

expressions for Γ, PL and P∗

Γ = γ5 ⊗ σ3 , PL = exp(−iπ/nσ3) , νk = 4 sin2(πk/n) , (B.19)

to obtain the final expression for the localized anomaly

A(x) = −
i

8π2n

∑

k

1

sin(πk/n)
Tr(ΛP k

GA2)δ(y) , (B.20)

where the trace is now over the gauge degrees of freedom only and the quantity A2 is given

by

A2 =
1

4
Tr γ5[a2] =

1

8
εαβγδ

(

1

24
RαβMNRγδ

MN − FαβFγδ

)

. (B.21)

Finally, for the gravitational anomaly we also need to evaluate

K(k)
m (x) ≡ lim

x′→P kx
DmK(x, x′, s) . (B.22)

The term with r = 2 in the expansion eq. (B.5) contributes

1

(4π)2
ν−1

k

{

δ(y);m[a2] + δ(y)[a2;m]

}

. (B.23)

However, there is a subtlety involved in this case: The term with r = 1 also contributes,

as can be seen from performing a covariant Taylor expansion34 around the point x′:

a1(x, x′) = [a1](x
′) + σN [a1;N ](x′) +

1

2
σNσM [a1;(NM)](x

′) + . . . , (B.24)

where σM = σ;
M (x, x′) and the dots stand for terms of higher order in σM . The second

order term in this expansion, combined with the exponential in eq. (B.5), gives indeed an

s independent contribution
1

(4π)2
ν−1

k δ(y);
n[a1;(mn)] . (B.25)

33For details on this see e.g. refs. [42]. Again, great simplifications occur as terms with less than four Γα

can be discarded.
34See for instance ref. [43].
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From the recursion relations eq. (B.12) and (B.13) one easily obtains

[a1;(mn)] =
1

96
ΓαβΓγδRαβsmRγδ

s
n + . . . (B.26)

However, this tensor is not only symmetric w.r.t. m and n, but it is even proportional to

the identity,

[a1;(mn)] =
1

2
[a1; s

s]gmn . (B.27)

The result for K
(k)
m (x) can thus be written as

K(k)
m (x) =

1

(4π)2νk
g̃1/2

(

δ(y);m
{

[a1;s
s] + [a2]

}

+ δ(y)[a2;m]

)

. (B.28)

The last term will not contribute to the localized anomaly, as ξm vanishes at the fixed

point.

C. Evaluation of the sums

We would like to compute

Xn(q) =
n−1
∑

k=1

qk

sin(πk/n)
, qn = −1 . (C.1)

Using the identity

1

sin(πx)
=

1

π

+∞
∑

`=−∞

(−)`

x − `
(C.2)

we rewrite this as

Xn(q) =
n

π

∑

`,k

qk−n`

k − n`
, (C.3)

where we have made use of the fact that qn = −1. By inspection of the possible values for

`, k we observe that the double sum can be written as a single one

Xn(q) =
n

π

∑

`′ 6=0

q`′

`′
. (C.4)

Observing that
∑

(q`/`) = − log(1 − q) with the branch cut going along the negative real

axis we obtain

Xn(q) =
n

π
(log(1 − q̄) − log(1 − q)) = −

n

π
log(−q) =

n

π
(iπ − log′ q) , (C.5)

where by definition the branch cut of log′ is going from 0 to (+∞− iε).

Next consider the sum

X(2)
n (q) =

n−1
∑

k=1

qk

sin(πk/n)2
, qn = +1 . (C.6)
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This time the identity

1

sin(πx)2
=

1

π2

+∞
∑

`=−∞

1

(` − x)2
(C.7)

is used to rewrite the sum as

X(2)
n (q) =

n2

π2

∑

k,`

qk−n`

(k − n`)2
, (C.8)

where again qn = 1 has been used. As before this can be combined into a single sum:

X(2)
n (q) =

n2

π2

∑

`′ 6=0

(

q`′

(`′)2
−

1

n2`′2

)

. (C.9)

This is in fact nothing but the definition of the poly logarithm functions

X(2)
n (q) =

n2

π2

(

Li2(q) + Li2(q̄) −
2

n2
ζ(2)

)

. (C.10)

Using the relation of Li2 to the Bernoulli polynomials as well as ζ(2) = π2/6 we find

X(2)
n (q) = −2n2

(

log2(−q)

4π2
+

1

12
+

1

6n2

)

. (C.11)

Note that this result implies

1

2n

n−1
∑

k=1

cos(πk/n)

sin2(πk/n)
qk = n

(

log(−q)

2πi

)2

+
1

12

(

1

n
− n

)

, (C.12)

for qn = −1. This result is needed for the evaluation of the anomaly of the remnant Lorentz

symmetry in section 3.2.
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